028-82712505

关键词:谐波治理有源电力滤波器DVR电压暂降调节器SVG静止无功发生器

产品中心/ Product

RGCM-B轧机动态滤波补偿/h3>

产品描述


1450可逆轧机
 
     1450型直流可逆轧机为典型案例,针对大、中、小型冶金轧钢企业,可逆直流轧机的运行特点以及由于运行工艺状况(可逆直流晶闸管调速非线性负荷)对电网造成的电网电压波动,电流、电压谐波超标严重,功率因数低下等电能质量现象,并以详细的设计数据及仿真模型,具体分析电能质量的严重状况,同时以详实的企业运行实况,描述在可逆直流轧机非线性动态负荷典型工况下,谐波治理及动态无功补偿方案及实施效果。并针对企业所取得的各项经济效益和对社会所做的贡献进行简单的概述。
1 概述
随着电力电子技术的飞速发展,我国的工矿企业中,电力电子器件的大量应用,可控、全控晶闸管作为主要开关元件,电力电子器件的整流设备,变频、逆变等非线性负荷设备的广泛应用,谐波问题亦日益广泛的提出。诸如谐波干扰、谐波放大、无功补偿失效及谐波无功电流对供电系统的影响等。上述电力电子设备是谐波产生的源头。谐波电流的危害是严重的,主要有以下几个方面:
 (1) 谐波电流在变压器中,产生附加高频涡流铁损,使变压器过热,降低了变压器的输出容量,使变压器噪声增大,严重影响变压器寿命;
 (2) 谐波电流的趋肤效应使导线等效截面变小,增加线路损耗;
 (3) 谐波电流使供电电压产生畸变,影响电网上其它各种电器设备不能正常工作,导致自动控制装置误动作,仪表计量不准确;
 (4) 谐波电流对临近的通讯设备产生干扰;
 (5) 谐波电流使普通电容补偿设备产生谐波放大,造成电容器及电容器回路过热,寿命缩短,甚至损坏;
 (6) 谐波电流会引起公用电网中局部产生并联谐振和串连谐振,造成严重事故及不良后果。
2 工程概述
2.1简介
  工厂主要设备为两台1450可逆轧机,因采用晶闸管整流、直流可逆调速等原因造成用电谐波超标,功率因数过低,对周边电网用户造成很大谐波干扰,为此进行设备改造以提高功率因数,治理谐波,节约能源,提高电网质量,降耗增容。
该钢业公司安装了两套动态无功补偿滤波装置,安全运行个月以来,得到客户及当地供电局的高度认可系统功率因数达到0.95以上,谐波含量满足要求。
2.2工程背景
该公司110KV变电站通过一台16000KVA变压器为两台1450轧机供电。
该轧机因采用晶闸管整流及直流调速等原因造成用电谐波严重超标,功率因数过低,给用户造成很大的经济负担,同时对周边电网用户造成很大谐波干扰,为此该公司及当地供电局决定进行设备改造以提高功率因数,治理谐波,节约能源,提高电网质量,降耗增容。
2.3工程设计概要
2.3.1轧机(1450)轧机运行主要参数
  (1)轧机为长期间断运行,根据钢板轧制厚度要求变速变向、变输出功率运行,运行时间大约为1~2小时/每卷带钢。
  (2)轧机分为主轧机及左、右卷取机、开卷机等系统控制,独立运行。
主轧机整流变压器容量为4000KVA,数量2台,电压比10KV/0.8KV*2,直流电动机2000KW ,数量4台,电枢电压800VDC,单台电枢电流2174A,效率92%,负荷率80%;卷取机整流变压器容量为 3150KVA,数量2台,电压比10KV/0.8KV*2,直流电动机1250KW,数量4台,电枢电压800VDC,单台电枢电流1359A,效率92%,负荷率80%。
2.3.2(1450)轧机谐波测试数据
                                                      1450轧机一台主轧电动机电流谐波含量为例
 
表1电流谐波含量针对5、7、11、13次谐波数值

 
A相(基波1550A)
B相(基波1625A)
C相(基波1585A)
5次谐波
20.58%
318.9A
19.68%
319.8A
20.13%
319.06A
7次谐波
15.1%
235A
14.08%
228.8A
14.39%
228.08A
11次谐波
10.15%
157.32A
8.94%
145.27A
9.9%
156.9A
13次谐波
7.23%
112.06A
7.08%
115.05A
6.15%
97.47A

 
2.3.3设计补偿方案计算
(以主轧机为例)
主机直流电动机2000KW*2,电枢电压800VDC,电枢电流2655A,效率取90%,负荷率取100%
(1)基波补偿容量 
有功功率:  P=U I =3168KW
视在电流:  I =I ×0.816=2655×0.816×2=4333A
视在功率:  S = ×U ×I = ×750×4333=5628KVA
功率因数:  COSφ = P / S1=3168/5628=0.57
无功功率:   Q1= =4651KVAR
实际基波补偿容量:4000KVAR
(2)谐波补偿容量 Kvar  
实际谐波补偿容量:3000KVAR
(3)变压器副边安装容量为4500KVAR动态无功补偿装置补偿后
补偿后无功功率: Q =4651-4000=651Kvar
补偿后视在功率: S = 3234kVA
补偿后功率因数: COSφ =3168/3234=0.98
  通过以上计算,该轧机变压器补偿选用我公司RGCM动态无功功率补偿滤波装置:
装置内配置多路5次滤波器和7、11、13次滤波器,在提高功率因数的同时还按标准滤除谐波电流.
通过以上仿真计算表明:5、7、11、13次谐波得到大幅度治理,使其完全符合要求。
表2补偿前后主轧机功率变化对比表(轧制过程三道次实测数据)

补偿前
A相(基波1550A)
B相(基波1625A)
C相(基波1585A)
国标
5次谐波
20.58%
318.9A
19.68%
319.8A
20.13%
319.06A
162A
7次谐波
15.1%
235A
14.08%
228.8A
14.39%
228.08A
115A
11次谐波
10.15%
157.32A
8.94%
145.27A
9.9%
156.9A
73A
13次谐波
7.23%
112.06A
7.08%
115.05A
6.15%
97.47A
64A
补偿后
A相(基波930A)
B相(基波975A)
C相(基波951A)
注:国标值是根据实际短路容量换算后值(见附件二)
5次谐波
7.7%
71.6A
8.56%
83.46A
6.39%
60.76A
7次谐波
7.31%
67.8A
6.14%
59.87A
7.72%
73.4A
11次谐波
1.65%
15.34A
2.02%
19.69A
2.74%
26.05A
13次谐波
0.94%
8.7A
0.91%
8.87A
1.31%
12.45A
补偿前后电流谐波对比表(以5、7、11、13次谐波为例)
 
 
补   前
补  后
备 注
主轧主机
视在功率S
2148KVA
1316KVA
 
有功功率P
1224KW
1224KW
 
无功功率Q
1765kvar
482kvar
 
功率因数
COSΦ=0.57
COSΦ=0.93
 
视在电流A
1560A
950A
 
 
 
 
 
 

                   
  通过以上数据表明;滤波装置投入后,治理前后电流谐波下降率效果是明显的,尤其对于5、7、11、13次谐波,针对钢业公司选用的是6相12脉波整流变压器,理论证明,对12脉波整流变压器反映到一次侧10KV电网时其5、7次电流谐波理论值应为零。只有11、13次谐波在10KV网侧可以记录,但从上表记录可以看出其值已很小,同时功率因数达到0.95以上,5、7、11、13次谐波达到要求。
2.4.2  无功补偿及滤波装置投入后其经济效益:
(1)功率因数从小于0.57提升到0.95以上,电费由每月罚款十几万变为每月奖励数千元。
(2)谐波得到治理,大大减少了运行中电气故障及电子元件的损坏。
(3)该公司16000KVA变压器得到增容,由另一台16000KVA变压器所带的负荷均转接到同一台变压器上运行,该企业停掉一台16000KVA变压器,该变压器每月节省占容费约24万元。现转接过来的各型轧机直流调速系统均安装了动态无功补偿及谐波治理装置,该装置运行以来,为客户创造了相当可观的经济效益。                   
2.5.1动态无功补偿工作原理
动态无功补偿滤波装置,主要由监控终端、开关模块、电容器、电抗器、断路器、机柜等构成,控制器采用前馈式检测(三相平衡负荷、采集单相信号;三相不平衡负荷,采集三相信号),以负载的实时无功功率为投切物理量,应用瞬时无功控制理论及网压支持算法,在20ms内完成信号数据采集、计算、及控制输出;投切开关接到投切指令后,在小于10ms内完成零电流投入,投切无涌流,对电网无冲击,并且在主电路和开关中采取措施,避免了投切电容的冲击,使运行稳定、安全、可靠。